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In a recent publication (Ustinov, 2002), we proposed an analytic 
approach to evaluation of radiative and geophysical weighting 
functions for remote sensing of a blackbody planetary atmosphere, 
based on general linearization approach applied to the case of nadir 
viewing geometry. In this presentation, the general linearization 
approach is applied to the limb viewing geometry. The 
expressions, similar to those obtained in (Ustinov, 2002), are 
obtained for weighting functions with respect to the distance along 
the line of sight. Further on, these expressions are converted to the 
expressions for weighting functions with respect to the vertical 
coordinate in the atmosphere. Finally, the numerical representation 
of weighting functions in the form of matrices of partial derivatives 
of grid limb radiances with respect to the grid values of 
atmospheric parameters is used for a convolution with the finite 
field of view of the instrument. 



 
 

Notations 
 

( ))()( zTBzB =  Atmospheric Planck function 
( )ss TBB =   Surface Planck function 

)(zf    Mixing ratio of an atmospheric constituent 
gH    Atmospheric scale height 

),( μzI   Intensity of radiation 
p    Atmospheric pressure; just a parameter 
r    Radial distance 

pr    Radial distance to pericenter of line of sight 
s    Distance along the line of sight 

)(zT    Atmospheric temperature 
sT    Surface temperature 

)(zX    Atmospheric geophysical parameters 
pHz g ln∫=   Vertical coordinate 

)(zκ    Atmospheric absorption coefficient 
μ    Zenith angle of the line of sight 
τ    Optical depth or distance along line of sight 
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1. Analytic computation of radiances for non-scattering 

atmospheres in thermal spectral region 
 
The RT equation: a Beer-Lamberth law: 
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Solution at TOA ( 0=τ ): 
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Using the transmittance function ( )ττ −= exp)(t : 
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The radiance  is an operator,  R )(τB  and )(τt  being its argument 
functions; in addition,  is a function of two scalar arguments  
and 

R sB

0τ .   
Corresponding variations: 
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Two remarks at this point: 
• All geophysical atmospheric and surface parameters are 

encapsulated in radiative atmospheric and surface 
parameters: )(τB , )(τt , and ,  0B 0t
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• As of yet, we didn’t specify any geometry of observations. 

 
 
 

2. Weighting functions as kernels of linearized operators; 
Radiative and geophysical weighting functions 

 
The reason we need weighting functions:  Need to solve the 
problems like this one: 
 

)()(),()( pRdXpK X∫ Δ=Δ ζζς  
 

To obtain the weighting function with respect to any parameter, we 
need to  linearize the radiance operator with respect to this 
parameter. 
 
We don’t need to linearize wrt all geophysical parameters of 
interest.  We need to linearize wrt only the radiative parameters 
entering the RT equation.  
 
Then we add partials of radiative parameters wrt geophysical 
parameters. 
 
For non-scattering atmospheres in thermal spectral region, there 
are only two radiative parameters: describing the source radiation 
and atmospheric opacity: 

)(zB , and )(zκ  
 
The Planck function B  depends only on atmospheric temperature 
T ; the atmospheric opacity depends on the rest of atmospheric 
parameters X , and may depend on T  too.  Thus we have: 
 
     Temperature weighting function: 
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     Weighing functions for the rest of atmospheric parameters 
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(So far, we didn’t do any RT computations, and didn’t specify the 
viewing geometry.) 
 
 

3. Radiative weighting functions for an arbitrary viewing 
geometry (still nothing specific) 

 
 
Planck weighting function:  We have to linearize the expression 
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with respect to the Planck function .  We have: B
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whence 
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Absorption coefficient weighting function:  We have to linearize 
the following chain of expressions with respect to the absorption 
coefficient κ : 
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After some algebra we have: 
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So, we did some RT computations applicable to any viewing 
geometry.   
 
Now we consider the specific viewing geometries.  We will review 
the results obtained for the nadir viewing geometry and compare 
them with those relevant to the limb viewing geometry. 
 
 

4. Radiative weighting functions for the nadir viewing 
geometry 

 
Here we have: 
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Hereμ , the cosine of the zenith angle of LOS also serves as a 
parameter specifying the viewing conditions.  We obtain 
immediately: 
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If this appears too simple, we can lift the bar.  Let’s assume that 
the underlying surface’s brightness is not only due to its proper 
thermal radiance, but also due to reflected downwelling 
atmospheric radiation: 
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After some of algebra, we can obtain: 
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Here  and  are “diffuse” downwelling transmittances 
and radiances, computable in the same way as upwelling 
transmittances and radiances but integrated over the lower 
hemisphere.  The reflected downwelling radiation is usually 
ignored in computations of weighting functions for nadir-viewing 
geometry. 

)(zt↓ )(zr↓

 
 

5. Radiative weighting functions for the limb viewing 
geometry 

 
Here, the parameter specifying the LOS is the radial distance of its 
pericenter, .  Also, pr ≠dzds / const.  Switching to the radial 

distance, , we have: zrr += 0
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Transmittances along the LOS: 
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After some of algebra, we can obtain 
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The conversion factor has a singularity at drds / 0=s : 

∞→
→0sdr

ds
 

This complication is worked around assuming that the model 
atmosphere can be adequately represented on a discrete altitude 
grid.   
 
Assuming a linear (or quadrature, or spline) interpolation, one can 
obtain a working finite-dimensional representation. 
 
After some algebra, we obtain: 
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Finally, the obtained  matrix can be convolved with the set of 
limb FOVs of a given instrument in a same fashion, in which the 
vector of radiances computed for the set of lines-of-sight with 

pericenter indices  and pericenter radii .  More specifically, 
we interpolate them over intermediate values of pericenter radii, 
convolve the interpolation functions (linear, quadratic, cube) with 
the set of limb FOVs of the instrument and, after some algebra, 
obtain: 

jj p
K

pjR

pj pr
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j

j
FOV

iji XKR  

With the Jacobian matrix 
( )FOV
ijK  computed, we are now ready to 

solve the resulting inverse problem 
 

yKx =  
 

using any applicable inversion method(s). 
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